On the Cramér-Rao lower bound under model mismatch

نویسندگان

  • Carsten Fritsche
  • Umut Orguner
  • Emre Özkan
  • Fredrik Gustafsson
چکیده

Cramér-Rao lower bounds (CRLBs) are proposed for deterministic parameter estimation under model mismatch conditions where the assumed data model used in the design of the estimators differs from the true data model. The proposed CRLBs are defined for the family of estimators that may have a specified bias (gradient) with respect to the assumed model. The resulting CRLBs are calculated for a linear Gaussian measurement model and compared to the performance of the maximum likelihood estimator for the corresponding estimation problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Symmetric Type Two-stage Trimmed Least Squares Estimator for the Simultaneous Equations Model

A two-stage symmetric regression quantile is considered as an alternative for estimating the population quantile for the simultaneous equations model. We introduce a two-stage symmetric trimmed least squares estimator (LSE) based on this quantile. It is shown that, under mixed multivariate normal errors, this trimmed LSE has asymptotic variance much closer to the Cramér-Rao lower bound than som...

متن کامل

Information Inequality for Estimation of Transfer Functions: Main Results

In this paper we derive a canonical lower bound for the autocovariance function of any unbiased transfer-function estimator. As a generalization of the Cramér-Rao bound, the Cramér-Rao kernel that we define can be derived without parametrizing the model set. The Cramér-Rao kernel is thus one of the cornerstones for experiment design formulations that do not depend on the choice of coordinates.

متن کامل

Analysis of the Cramér-Rao Bound in the Joint Estimation of Astrometry and Photometry

In this paper, we use the Cramér-Rao lower uncertainty bound to estimate the maximum precision that could be achieved on the joint simultaneous (or two-dimensional) estimation of photometry and astrometry of a point source measured by a linear CCD detector array. We develop exact expressions for the Fisher matrix elements required to compute the Cramér-Rao bound in the case of a source with a G...

متن کامل

A risk-unbiased approach to a new Cramér-Rao bound

How accurately can one estimate a deterministic parameter subject to other unknown deterministic model parameters? The most popular answer to this question is given by the Cramér-Rao bound (CRB). The main assumption behind the derivation of the CRB is local unbiased estimation of all model parameters. The foundations of this work rely on doubting this assumption. Each parameter in its turn is t...

متن کامل

Autonomous Positioning Techniques Based on Cramér-Rao Lower Bound Analysis

We consider the problem of autonomously locating a number of asynchronous sensor nodes in a wireless network. A strong focus lies on reducing the processing resources needed to solve the relative positioning problem, an issue of great interest in resourceconstrained wireless sensor networks. In the first part of the paper, based on a well-known derivation of the Cramér-Rao lower bound for the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015